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1. INTRODUCTION

Foliar applied nutrition is becoming more popular and widely used in the Almond industry due to
its ability to correct nutrient deficiencies relatively quickly and effectively’2. However, differing
suppliers offer foliar nutrients which vary in formulation, form and chelation agents. Most suppliers
compare product efficiency in terms of treated and control trials, so there are a limited number of
studies which evaluate nutrient translocation between different plant parts (such as leaves, kernels
and developing buds). Nutrient transport and accumulation into the kernel is directly correlated
with kernel yield and quality. Better understanding of the active role of Dual Chelation Technology
(DCT) in promoting site specific nutrient accumulation will aid the Almond industry in its decision
making on nutrient application scheduling and formulations. As such this study aimed to
understand nutrient accumulation into kernels via Dual Chelation Technology, and the potential
return on investment for foliar nutrients in the Almond industry.

Dual Chelation Technology

Dual Chelation Technology is a patented and unique fertilizer formulation technology that was
developed to deliver plant nutrients and minerals efficiently into plant tissues where nutrient
corrections are required. The Dual Chelated products contain uniquely formulated minerals and
plant nutrients together with organically derived amino-acids, and biologically highly active
molecules (BAOM — patented product). Organically derived amino-acid chelated minerals have a
lower level of phytotoxicity and a higher level of penetration into plant tissues. Biologically active
molecules drive the nutrition to where it is required within the plant. The ultimate result efficiently
delivers plant nutrition and minerals to address nutrition deficiencies and increase the productivity
of plants.
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Figure 1. Amino acid transport pathways within plants, and summery of role of amino acid
transporters in plants (Dinkeloo et al., 2017). 1



2. OBJECTIVE

The specific objectives of this study are:

1. To study the efficacy of Dual Chelation Technology (amino acid chelated nutrients +
CPPA) in nutrient absorption via leaves.

2. To study the site-specific translocation of different nutrients as per the nutrient
requirement at nut maturing stage.

3. To examine the impacts of foliar applied nutrients on the yield parameters: nut weight,
hull weight and kernel weight, and the outturn and return on investment.

3. MATERIALS AND METHOD

3.1. Site Selection and Trial Design

Site selection was done according to the OLAM orchards annual trial plan, and Campbells farm
in Victoria was selected as the trial site. A block in the new development (5™ leaf) with relatively
small trees was selected, to conduct manual foliar spray and to ensure 100% spray coverage.
The trial design was Randomised Complete Block Design with three (3) trees for each
treatment, replicated three times. Water volume used was 1200 L/ha. Spray volume per tree
was 4.76 L (1200 L/ha water, 252 Trees/ ha). Every step of the trial was supervised by the
OLAM technical agronomist.

Tablel. Treatments and application rate

Treatment Rate/ ha Active Ingredient/Ha
Transit Mg 2Kg 134g/ha
Transit Ca 2Kg 210g/ha
Transit Zn 2Kg 210g/ha
Transit Cu 2Kg 336g/ha
Transit Fe 2Kg 210g/ha
Premium Trace (Cu, B, Zn, Mn & Fe) 2Kg 210g/ha
Control 0 0

Figurel. Trial Layout —Randomised Complete Block Design
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4. OBSERVATIONS

4.1. Kernel and Leaf Nutrient Analysis

After fourteen days of treatment, twenty leaves per plant were collected from three plants per
treatment, and washed leaves were analysesd for elements N, P, K, Ca, Mg, B, Zn, Fe, Mo, Cu
and S at Phosyn Analytical Laboratory, QLD.

After fourteen days of treatment, twenty nuts per plant were collected from three plants per
treatment. Nuts were manually cut open and kernels were analyzed for elements N, P, K, Ca,
Mg, B, Zn, Fe, Mo, Cu and S at Phosyn Analytical Laboratory, QLD.

4.2. Kernel Weight, Hull Weight and Nut Weight

At harvest, sixty nuts were randomly collected from the whole harvested nuts from the three
plants that received each treatment. Nut weight, hull weight and kernel weight were separately
recorded.

4.3. Statistical analysis

Analysis of variance was performed using Prism 7 (Graph Pad Software). Significant difference
between the treatments was determined by comparing the replicate means using Tukey’s test
(P<0.05). t-test was performed to determine the significant difference between the control
versus treated, a P value <0.15 was considered to be significant.
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5. RESULTS

Figure 6. Analysis of Ca in the leaves and kernels with reference to Control vs Transit Ca treatment.

Leaf Kernel

Transit Ca Control Transit Ca Control

Figure 6 shows that significantly higher levels of Ca were present in the kernels of Transit Ca treated
plants compared to control plants (B), while there was no significant difference in the leaf Ca levels
between control and Transit Ca treated plants (A). This indicates that the foliar applied Ca was
actively translocated into the kernel during the kernel development stage. An increase of 12.5% in
the levels of kernel Ca was observed due to Transit Ca treatment (Table 2).

Figure 7. Analysis of Mg in the leaves and kernels with reference to Control vs Transit Mg treatment.
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Figure 7 shows that significantly higher levels of Mg were present in the kernels of Transit Mg treated
plants compared to control plants (B), while there was no significant difference in the leaf Mg levels
between control and Transit Mg treated plants (A). This indicates that the foliar applied Mg was
actively translocated into the kernel during the kernel development stage. An increase of 6% in the
levels of kernel Mg was observed in the Transit Mg treated plants compared to the control plants
(Table 2).



Figure 8. Analysis of Cu in the leaves and kernels with reference to Control vs Transit Cu treatment.
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Figure 8 shows that significantly higher levels of Cu were present both in the leaves and kernels of
Transit Cu treated plants compared to control plants (A) and (B). A 450% increase in the levels of
leaf Cu and a 21% increase in the levels of kernel Cu was observed in the Transit Cu treated plants
compared to the control plants (Table 2).

Figure 9. Analysis of Zn in the leaves and kernels with reference to Control vs Transit Zn treatment.
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Figure 9 shows that significantly higher levels of Zn were present in leaves of Transit Zn treated
plants compared to control plants (A), while there was no significant difference in the kernel Zn levels
between control and Transit Zn treated plants (B). Leaf Zn levels increased by 66.2% in the Transit
Zn treatment compared to control (Table 2).

Figure 10. Analysis of Fe in the leaves and kernels with reference to Control vs Transit Fe treatment.
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Figure 10 shows significantly higher levels of Fe both in the leaves and kernels of Transit Fe treated
plants compared to control plants (A) and (B). Leaf Fe levels increased by 36.1% and kernel Fe
levels increased by 15.2 % in the Transit Fe treated plants compared to the control plants (Table 2).

Figure 11. Analysis of yield parameters with reference to Control vs Premium Trace treatment.
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Figure 11 shows that the Premium Trace treatment significantly increased the Nut weight (A), Hull
weight (B) and Kernel weight compared to the control. Nut weight, hull weight and kernel weight
were increased by 4.7%, 5.3% and 8.3% respectively by the Premium Trace treatment compared to
the control (Table 3). Out turn was calculated as the percentage of kernel weight to nut weight. Out
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(P<0.15). The t-test was performed with Prism 7 (Graph Pad Software).




Table 2. Analysis of different nutrient levels in the leaves and kernels with reference to different Dual
Chelated nutrient product treatments.

Parameters Treatments P value Significance % increase

Control Transit Ca

Leaf Ca % 3.997 £ 0.2028 4147 £0.0318 0.51 ns -

Kernel Ca % 0.48 + 0.02646 0.54 +0.01 0.1012 yes 12.5%
Control Transit Mg

Leaf Mg % 0.8633 £ 0.02667 0.8267 £ 0.02186 0.35 ns -

Kernel Mg % 0.39 £ 0.005774 0.4133 £ 0.01202 0.155 yes 6%
Control Transit Cu

Leaf Cu ppm 16.8 + 1.852 92.4 +11.86 0.0033 yes 450%

Kernel Cu ppm 13.27 £ 0.6227 16.8 + 0.2646 0.0064 yes 21%
Control Transit Zn

Leaf Zn ppm 82 + 2517 136.3 + 5.667 0.0009 yes 66.2%

Kernel Zn ppm 58 £ 0.5774 60.33 £4.485 0.633 ns -
Control Transit Fe

Leaf Fe ppm 135.7 + 13.59 184.7 +22.7 0.1377 yes 36.1%

Kernel Fe ppm 68 + 4.509 78.33 £ 0.3333 0.0843 yes 15.2%

The values given are mean + standard deviation, n=3. P value <0.15 was considered to be significant.

Table 3. Analysis of yield parameters with reference to Control vs Premium Trace treatment.

Parameters Treatments Pvalue  Significance % increase
Control Premium Trace
Nut weight g (of 60 nuts) 256.3 + 1.453 268.3 +4.91 0.0791 yes 4.68%
Hull wt g (of 60 hulls) 178.3 £ 0.3333 187.7 £ 4.096 0.0856 yes 5.27%
Kernel wt g (of 60 kernels) 78 £1.155 845%0.5 0.0242 yes 8.33%

The values given are mean + standard deviation, n=3. P values <0.15 were considered to be significant.



Figure 12. Analysis of macro elements in the leaves and kernels with reference to different nutrient
treatments.
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Figure 12 shows the effects of
foliar application of different
nutrients on the levels of the
macro elements in the leaves
b and kernels: leaf Ca% (1A),

ab kernel Ca% (1B), leaf Mg% (2A),
kernel Mg% (2B), leaf K% (3A),
kernel K % (3B), leaf P% (4A),
kernel P% (4B). Treatments
were Transit Cu (blue), Transit
Zn (red), Transit Ca (green),
Control (purple), Transit Fe
(orange), Transit Mg (black) and
Premium Trace - Cu, B, Zn, Mn
& Fe (brown). Each bar
represents meant SE (n=3
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The highest levels of kernel Ca were found in the Transit Ca treated plants compared to all the other
treatments (Figure 12 - 1A, 1B). There were significantly higher levels of Ca present in the kernels
of Transit Ca treated plants compared to the Transit Zn treated plants. Whereas, there was no
significant difference between the leaf Ca levels between the treatments. Significantly lower levels
of leaf Mg were found in the Transit Fe treated plants compared to the control and the premium trace
treated plants, while there was no significant difference between the treatments in the levels of kernel
Mg (Figure 12 - 2A, 2B). Kernel K was found to be significantly higher in the Transit Fe and Transit
Mg treatments compared to Transit Zn and Transit Cu treatments. There was no significant
difference between the treatments in the leaf K levels (Figure 12 - 3A, 3B). Kernel P was significantly
lower in the Transit Zn treated plants compared to all the other treatments while there was no
significant difference between the treatments in the leaf P levels (Figurel?2 - 4A, 4B).

Figure 13. Analysis of micro elements in the leaves and kernels with reference to different nutrient
treatments. 9
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Figure 13 Shows the effects of
foliar application of different
nutrients on the levels of the
micro elements in the leaves and
kernels: leaf Zn ppm (5A), kernel
Zn ppm (5B), leaf B ppm (6A),
kernel B ppm (6B), leaf Fe ppm
(7A), kernel Fe ppm (7B).
Treatments were Transit Cu
100- (blue), Transit Zn (red), Transit
(7B) Ca (green), Control (purple),
Transit Fe (orange), Transit Mg

B ppm

801 (black) and Premium Trace - Cu,
£ 60- B, Zn, Mn & Fe (brown). Each bar
2 represents meant SE (n=3
& 40 replicates). Significant difference

between the treatments were

204 determined by comparing the

replicate means using Tukey's
0- test (P<0.05). Different
N S - S-S superscripts show significant
¢$° (,é*& oé*o ‘._'c:‘{é o‘?'(( o"\& <& difference between treatments.
R P & & E ANOVA performed with Prism 7
Q@@ (Graph Pad Software).

Leaf Zn levels were significantly higher in the Transit Zn and the Premium Trace treatments
compared to all the other treatments, while there was no significant difference in the kernel Zn levels
between the treatments (Figure 13 - 5A, 5B). Leaf B levels were significantly higher in the Transit,
Transit Fe and Transit Mg treatments compared to Transit Ca treatment (Figure 13 - 6A, 6B). Leaf
Fe levels were significantly higher in the Transit Fe treatment compared with Transit Cu, Transit Zn
and Transit Ca treatments (Figure 13 - 7A, 7B). There was no significant difference between the
treatments in the levels of kernel Zn, B and Fe (Figure 13 - 5B, 6B, 7B).
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Figure 14. Analysis of micro elements in the leaves and kernels with reference to different nutrient
treatments (continued....).
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Figure 14 Shows the effects of
foliar application of different
nutrients on the levels of the
micro elements in the leaves and
kernels: leaf Cu ppm (8A), kernel
Cu ppm (8B), leaf Mn ppm (9A),
kernel Mn ppm (9B), leaf Mo ppm
10A), kernel Mo ppm (10B).
Treatments were Transit Cu
(blue), Transit Zn (red), Transit
Ca (green), Control (purple),
Transit Fe (orange), Transit Mg
(black) and Premium Trace - Cu,
B, Zn, Mn & Fe (brown). Each
bar represents meant SE (n=3
replicates). Significant difference
between the treatments were
determined by comparing the
replicate means using Tukey's
test (P<0.05). Different
superscripts show significant
difference between treatments.
ANOVA performed with Prism 7
(Graph Pad Software).

Leaf Cu levels were significantly higher in the Transit Cu treatment compared to all the other
treatments, whereas the kernel Cu levels were significantly higher in the Transit Cu treatment
compared to control, Transit Zn and Transit Ca (Figure 14 - 8A, 8B). There were no significant
differences in the levels of Mn and Mo in leaves and kernels between the treatments (Figure 14 -

9A, 9B, 10A, 10B).

There was no significant difference in the levels of N in the leaves and kernel between any of the
treatments (data not shown). Significantly higher levels of all the tested nutrients were present in the
leaves than the kernels except P and Mo (Figurel2, 13, 14). P% was significantly higher in the
kernels compared to the leaves (Figurel2 - 4A, 4B).

Figure 15. Analysis of yield parameters with reference to different nutrient treatments

11
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Figure 15 shows the effects of foliar application of different nutrients
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The highest values for average nut weight, hull weight and kernel weight were observed from the
Premium Trace treated plants compared to all the other treatments (Figure 15 - A, B, C).

7. CONCLUSION AND FUTURE WORK

Results of this study clearly show the efficiency of Dual Chelation Technology in foliar plant nutrition.
More specifically:

e This study showed that the dual chelated foliar nutrients were absorbed via leaves, and
translocated to specific sites as per the nutrient requirement of plants at a particular growth
stage.

e Also, this study showed that the yield from almonds can be improved by foliar applied dual
chelated nutrients.

e QOutturn was found to be increased by 3 % by the Premium Trace treatment compared to the
control.

12



A better understanding of the translocation and accumulation of different nutrients to the buds is
needed for decision making on post-harvest nutrition, aimed at the next season’s yield development.
So, along with the leaves and kernel nutrients, bud nutrient levels also need to be assessed.

Foliar application of
Dual Chelated nutrients
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Appendix 1. Correlation between the leaf Cu levels and other mineral concentrations in the leaf
tissues of Transit Cu treated plants (only the results that showed high correlation are presented
here).
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Appendix 2. Correlation between the leaf Zn levels and the other mineral concentrations in the leaf
tissues of Transit Zn treated plants (only the results that showed high correlation are presented
here).
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Appendix 3. Correlation between the leaf Ca levels and the other mineral concentration in the leaf
tissues of Transit Ca treated plants (only the results that showed high correlation are presented

here).
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Appendix 4. Correlation between the leaf Fe levels and the other mineral concentration in the leaf
tissues of Transit Fe treated plants (only the results that showed high correlation are presented

here).
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Appendix 5. Correlation between the leaf Mg levels and the other mineral concentration in the leaf
tissues of Transit Mg treated plants (only the results that showed high correlation are presented

here).
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Appendix 6. Correlation between the kernel Cu levels and the other mineral concentration in the
kernels of Transit Cu treated plants (only the results that showed high correlation are presented

here).
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Appendix 7. Correlation between the kernel Zn levels and the other mineral concentration in the
kernels of Transit Zn treated plants (only the results that showed high correlation are presented
here).
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Appendix 8. Correlation between the kernel Ca levels and the other mineral concentration in the
kernels of Transit Ca treated plants (only the results that showed high correlation are presented
here).
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Appendix 9. Correlation between the kernel Fe levels and the other mineral concentration in the
kernels of Transit Fe treated plants (only the results that showed high correlation are presented

here).
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Appendix 10. Correlation between the kernel Mg Ca levels and the other mineral concentration in
the kernels of Transit Mg treated plants (only the results that showed high correlation are presented
here).
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Appendix 11. Statistical analysis of significant results.
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